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Efficient signal transmission by synchronization through compound chaotic signal
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~Received 22 January 1997!

The idea of synchronization of chaotic systems is further extended to the case where all the drive system
variables are combined suitably to obtain a compound chaotic signal. An appropriate feedback loop is con-
structed in the response system to achieve synchronization among the variables of the drive and response
systems. We apply this approach to transmit both analog and digital data signals in which the quality of the
recovered signal is higher and the encoding is more secure.@S1063-651X~97!05107-6#

PACS number~s!: 05.45.1b, 43.72.1q, 47.52.1j
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The concept of synchronized chaos@1–22# allows for the
possibility of building a set of chaotic dynamical system
such that their common signals are synchronized. In gen
there are two methods of chaos synchronization which h
been studied extensively@1–8#. In the first method, due to
Pecora and Carroll@1#, a stable subsystem of a chaotic sy
tem is synchronized with a separate chaotic subsystem u
suitable conditions. This method has been further exten
to cascading chaos synchronization with multiple stable s
systems@1–5#. The second method to achieve chaos s
chronization is due to the approach of one-way coupling
which two identical chaotic systems are synchronized w
out requiring construction of any stable subsystems@6–8#. In
both these approaches only one chaotic signal from the d
system is utilized to drive the response systems. In
present paper, the idea of synchronization of chaotic syst
is further extended to the case where all the drive sys
variables are combined suitably so that a compound cha
drive signal is so produced to drive the response system
feedback loop in the response system is constructed ap
priately to achieve synchronization among the variables
the drive and response systems. The present method is
tirely different from the recently proposed method of sy
chronization through active-passive decomposition~APD! of
dynamical systems@18# in which suitable combinations o
chaotic signals are used to drive both drive and respo
chaotic systems. In this approach the response system h
be suitably modified to achieve synchronization. Howev
the proposed method in which both drive and response
tems are totally unaltered is entirely different and it can
easily implemented in practical situations for communic
tions.

The present method of chaos synchronization is descr
as follows. Let us consider an arbitraryN-dimensional~cha-
otic! dynamical system

ż5f„z…. ~1!

Now let us consider the following form of the drive syste
equations:

ẋ5f„x…1e@v~ t !2xj~ t !#, ~2!

ẏ5f„y…1e@u~ t !2yj~ t !#, ~3!
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wherex andy are identical copies ofz. In Eqs.~2! and ~3!
the terms proportional to the coupling strengthe are nonzero
only for the j th components. If v(t)5yj (t) and
u(t)5xj (t) then Eqs.~2! and ~3! are two identical mutually
coupled chaotic systems. This kind of mutually coupled c
otic systems has been well studied in detail and for app
priatee values, the systems~2! and~3! self-synchronize with
each other@9,10#. Now the two mutually coupled self
synchronized systems~2! and ~3! are considered together a
a singledrive system. Then the concept of chaos synchro
zation throughdrive-responseformalism can be establishe
by considering theresponsesystem equations as

ẋr5f„xr…1e r@v r~ t !2~xr ! j~ t !#. ~4!

Equation ~4! is the copy of Eq.~1! driven by the signal
v r(t)5v(t) through one-way coupling@6–8#. Heree r is the
one-way coupling parameter. If the maximal Lyapunov e
ponent of Eq.~4! is negative under the influence of the ch
otic signalv r(t) added to thej th component of the respons
system vector fieldẋr5f„xr…, thenixr2yi˜0 for t→`. Syn-
chronization between systems~2! and ~3! occurs if the dy-
namical system describing the evolution of the differen
e5x2y,

ė5 ẋ2 ẏ, ~5!

possesses a stable fixed point at the origine50. Also syn-
chronization between systems~4! and ~3! occurs if the dy-
namical system describing the evolution of the differen
er5xr2y,

ėr5 ẋr2 ẏ, ~6!

possesses a stable fixed point at the originer50. This can be
further proved by using~global! Lyapunov functions@3,13#.

However, it is not necessary that only one of the dri
variables alone is used for synchronization with the respo
system (v r(t)5yj (t)). One can also combine and modify th
drive signal appropriately, and then the transformation c
be undone at the response system for synchronization. A
these lines, Carroll recently reported the synchronization
chaotic systems using filtered signals@19#. Alternatively, in-
stead of using one drive signal variable, one can transfo
the drive system variables by appropriate linear
251 © 1997 The American Physical Society



a
te
n
s
ro

c-

ce

ed
he

sys-

iza-
e

g
f
n
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nonlinear combinations~can be treated asencryption key
function! to produce a compound chaotic signal for use
the drive signal for synchronization with the response sys
@22#. A suitable feedback loop can be devised in the respo
system to achieve synchronization among the variable
the drive and response systems. This approach of synch
zation can be described as follows for the drive system~1!
and ~2!. The drive encryption key is

Kd5h~y…, ~7!

whereh(y… is the linear or nonlinear encryption key fun
tion. The compound drive signal is

d~ t !5v~ t !1Kd . ~8!

The response system~4! is altered as follows.The response
encryption key is

Kr5h~xr… ~9!

and the regenerated drive signal is

v r~ t !5d~ t !2Kr , ~10!

FIG. 1. Maximal conditional Lyapunov exponentlmax versus
e r of the response system equations~23!–~25!.
s
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ẋr5f„xr…1e r„v r~ t !2~xr ! j~ t !…. ~11!

In this case also if the dynamical equation for the differen
er5xr2y,

ėr5 ẋr2 ẏ, ~12!

possesses a stable fixed point at the originer50, then syn-
chronization between systems~11! and ~3! occurs for suit-
ablee r . In general, however, the stability has to be check
numerically using the fact that synchronization occurs if t
maximal Lyapunov exponent of Eq.~11! is negative under
the influence of regenerated drive signal at the response
tem for appropriate one-way coupling parametere r @3,6–
8,13#.

To demonstrate the above scheme of chaos synchron
tion we consider the well-known Chua circuit model. Th
model drive equations are represented as

ẋ15a$@x22x12g~x1!#1e@v~ t !2x1#%, ~13!

ẋ25x12x21x3 , ~14!

ẋ352bx2 , ~15!

ẏ15a$@y22y12g~y1!#1e@u~ t !2y1#%, ~16!

ẏ25y12y21y3 , ~17!

ẏ352by2 , ~18!

where g(x)5bx10.5(a2b)(ux11u2ux21u) and
a521.27, b520.68, a510.0, andb514.87. If v(t)5y1
andu(t)5x1 then for appropriate values of mutual couplin
parametere ~we choose heree51.5!, the above system o
Eqs. ~13!–~18! self-synchronizes. After synchronizatio
x15y1, x25y2, and x35y3. Now let us consider the drive
encryption key function asthe drive encryption key

Kd5y2 , ~19!
FIG. 2. Schematic diagram of the signal transmission method using compound chaotic signal.
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and the compound drive signal

d~ t !5v~ t !1Kd5y11y2 . ~20!

Then the response system equations arethe response encryp-
tion key

FIG. 3. Numerical encoding and decoding of aspeechlike signal
s(t) using the systems~13!–~20! and ~21!–~25! for e r 51.5 ande
51.5.~a! Information signals(t), ~b! transmitted compound chaotic
signald(t), ~c! recovered information signalr (t) @using Eq.~38!#,
~d! error signals(t)2r (t). Note the perfect recovery of the signa
s(t).
Kr5yr , ~21!

and the regenerated drive signal

v r~ t !5d~ t !2Kr5d~ t !2yr , ~22!

ẋr5a$@yr2xr2g~xr !#1e r@v r~ t !2xr #%, ~23!

ẏr5xr2yr1zr , ~24!

żr52byr . ~25!

The difference system (e5x2y) of Eqs.~13!–~15! and Eqs.
~16!–~18! is

ė15a@~e22e12sie1!22ee1#, ~26!

ė25e12e21e3 , ~27!

ė352be2 , ~28!

where si5a or b ( i51 or 2! which is determined from
g(x) @10,22#. It is easy to prove that the temporal derivativ
of the Lyapunov function

E5~b/2!e1
21~ab/2!e2

21~a/2!e3
2 ~29!

is negative,

Ė5be1ė11abe2ė21ae3ė3 ~30!

52ab~e12e2!
22ab~a12e!e1

2, ~31!

for all e1 ,e2 ,e3 when e.2a/2. ~Note thata,b,0 and
a521.27) @10,13#.

Also, the difference system of Eqs.~16!–~20! and Eqs.
~21!–~25! is given as

ėx5a@~ey2ex2siex!2e r~ex1ey!#, ~32!

ėy5ex2ey1ez , ~33!

ėz52bey , ~34!

FIG. 4. Power spectrum of the information signals(t) ~a!, trans-
mitted signald(t) ~b!, and recovered signalr (t)~c!. Note again the
coincidence of the spectrum of~a! and ~c!.
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whereex5(xr2y1), ey5(yr2y2), andez5(zr2y3). It is
again easy to prove that the temporal derivative of
Lyapunov function

E5~b/2!ex
21@ab~11e r !/2#ey

21@a~11e r !/2#ez
2 ~35!

is negative,

Ė5bexėx1ab~11e r !eyėy1a~11e r !ezėz ~36!

52ab@~ex2ey!
21e rey

2#2ab~a1e r !ex
2 ~37!

for all ex ,ey ,ez whene r.2a. In Eq. ~37! the equality sign
applies only at the origin; therefore, the synchronization
tween the drive system equations@Eqs. ~16!–~20!# and re-
sponse system equations@Eqs.~21!–~25!# is globally asymp-
totically stable. This can be further checked numerically
computing the maximal Lyapunov exponent of the respo
system Eqs.~23!–~25! as a function of the one-way couplin
parametere r as shown in Fig. 1. It is evident from this figur
that the response system is synchronized with the drive co
terpart, which is confirmed by a change in the sign of
maximal conditional Lyapunov exponent of the respon
system from positive to negative@1–8#.

FIG. 5. Numerical encoding and decoding of adigital signal
s(t) using the systems~13!–~20! and ~21!–~25! for e r 51.5 ande
51.5.~a! Information signals(t), ~b! transmitted compound chaoti
signald(t), ~c! recovered information signalr (t) @using Eq.~38!#.
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The above scheme of synchronization may be used
construct transmitter-receiver systems for encoding
masking information data signals. The schematic represe
tion of this approach is depicted in Fig. 2. To send the inf
mation signals(t) from the transmitter to receiver using th
familiar chaos signal masking technique@2,4,5,11,18#, now
the signalsv(t) andu(t) are modified asv(t)5y11s(t) and
u(t)5x11s(t), respectively. The significance of this type
encoding the message signals(t) is not only to add the sig-
nal to certain chaotic carrier but also to simultaneously dr
the self-synchronizing transmitter dynamical system. As
consequence this type of encoding ensures security~because
of the chosen compound encryption key! and also avoids the
typical distortion errors@because of internal modulation o
self-synchronizing drive system with signals(t)# that occur
for almost all previous communication schemes based
chaos synchronization@11,18#. By employing this scheme
signal is recovered at the response system Eqs.~23!–~25! as
the recovered signal:

r ~ t !5v r~ t !2xr~ t !5s~ t !. ~38!

Figure 2 shows the numerical simulation results of the
coding and decoding of aspeech-like signaland its recovery
using the systems~13!–~25! and~38!. Figure 2~d! establishes
the perfect signal recovery in which the error sign
s(t)2r (t) approaches zero ast→`. Figure 3 depicts the
power spectrum of the information signals(t), the actual
transmitted compound chaotic signald(t), and the recovered
information signalr (t). From the results, it is clear that th
detection of the information signals(t) is not possible either
from the transmitted signal@Fig. 3~b!# or from its power
spectrum~Fig. 4! ~due to its broadband nature!. Due to the
nature of this scheme not only can analog signals be tra
mitted but digital signals can also be transmitted. Figure
shows the transmission of a digital bit data using Eqs.~13!–
~25!. From the simulation results, the recovered informat
signal is almost identical to the information signal.

In the above example, we have considered thedrive
encryption key function Kd as a linear one. However
one can also consider suitable nonlinear functions us
the drive state variables of Eqs.~13!–~18! such as
y2
2 ,y2y3 ,y2x2 ,y2y3x2x3 , . . . . The analysis again confirm
our above assertions. Details will be published separatel

In conclusion, we have introduced a procedure of achi
ing an efficient synchronization using a compound chao
signal. The compound drive chaotic signal has been ge
ated by using suitable encryption functions and with app
priate feedback loop at the receiver, synchronization am
the variables of the drive and response has been establis
Further, its application in secure communications of ana
and digital signals has been demonstrated and perfect s
recovery is achieved. Due to the present scheme of effic
encoding of message signals with suitable encryption
functions, security of the transmitted signals is greatly e
hanced.

This work has been supported through a research pro
by the Department of Science and Technology, Governm
of India.
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@20# J. Güémez and M.A. Matı´as, Phys. Rev. E53, 3059~1996!.
@21# M. Lakshmanan and K. Murali,Chaos in Nonlinear Oscilla-

tors: Controlling and Synchronization~World Scientific, Sin-
gapore, 1996!.

@22# K. Murali and M. Lakshmanan, Int. J. Bifurc. Chaos~to be
published!.


